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INTRODUCTION 

BRUIN and Beverloo [1] have treated the problem of the 
transient response of a hollow cylinder to a step in fhtx at 

the inner surface.~ This problem was considered concur- 
rently by Gandhi [2] and by (319e.r and Sunderland [3]. 
Gandhi corroberates the results of Bruin-Beverloo. Glc;er 
and Sunderland treat a general problem which can be 
special&l to the problem of Bruin-Beverloo and Gandhi.$ 
A related problem, the transient response of a hollow 
cylinder to a step in flux at the. outer surface, was previously 
discussed by Phytbian [S] ; this problem is also a specializa- 
tion of &er and Sunderland’s problem The transient 
response of a hohow cylinder to arbitrary, time-dependent 
heat fluxes at the inner and outer surfaces can be calculated 
by using Duhamel’s theorem ([6] pp. 30-32) and the 
solutions of Bruin-Beverloo and Phytbian. 

Bruin and Beverloo have thorou~ly discussed the 
solution appropriate for large values of Fo, the dimension- 
less time. This solution is impractical for calculations when 
Fo + 0 because the infinite summation converges very 
stowly. In certain cases (Fo -+ 0, t > 1) the truncation error 
can be appreciable even when using fifty5 terms in the 
summation. One purpose of this note is to present a solution 
which is appropriate for smali values of Fo; this solution 
has not been discussed by previous authors. A second 
purpose of this note is to present the results in a graphical 
form convenient for rapid, hand calculations. 

SOLUTION USEFUL FOR SMALL VALUES OF F,, 

A solution useful for small values of Fo was obtained by 
using the procedure outlined by Carslaw and Jaeger ([6] 
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t For nomenclature and a complete statement of 
the problem see [I]. Two t~ograp~~ errors appear 
in [i] : 
(1) Equation (4) should read “at?/aR = - 1; R = 1; 
ae/aR = 0, R = 23. 

(2) The exponential appearing in the definition of the 
ordinate of Fig 5 should read “exp(piFo)“. 

$ 819er [4] has also solved the general problem of 
two concentric layers in imperfect thermal contact. 

8 The nmber used by Bruin and Beverloo. 

pp. 330-331). Equation (5) of [l] was expanded using the 
binomial theorem and the asymptotic expansions of the 
Bessel functions. The solution is 
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where 

f =f(n) = 
2n(a. - 1) + (R - 1) 

2,jFo 

9 = s(n) = 20 + I)@ - 1) - (R - 1) 
0) 

2 JFo -’ 

For practical calculations one truncates the solution. To 
illustrate the effect of truncation, three solutions are con- 
sidered. 

e: = 2 

_I _____-_-._-.. 

* This solution is also the truncated solution discussed by 
Carslaw and Jaeger ([6] p. 339) for the region bounded 
internally by a circular cylinder. 
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0* = e2 + 2 
9 + 6R +.33Rs 

32R2 
Fo i”erfc(f) 

1 

es = e4 + 2 
75 + 27R + 33R2 + 2491’ 

128R’ 

x Foa i4erfc(f) + 
1 - 3R 
4R Fo* i2erfc(g) 

9 - 6R + 33R2 
+ 

32R2 
Fo i”erfc(e) 

75 - 27R + 33R2 - 249R’ 
-I- 

128R3 
Fo* iqerfc(g) 1 , 

where 

R-l 
-- 

f - 2,/Fo 

B = 2(L - 1) + (R - 1) 
2,/Fo 

Following Bruin and Beverloo, the truncation errors are 
defined as 

e 5oterm represents the Bruin-Beverloo solution truncated 
after fifty terms. Figure 1 presents the truncation error for 
a shell with thickness of 3/2 the internal radius (2 = 5/2); 
the truncation errors for the new solution are compared 
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FIG. 1. Truncation error vs. Fo for rZ = 5/2, R = 1. 

with those for the Bruin-Beverloo solution truncated after 
five terms (A,) and after one term (Ai) The range of Fo for 
which equation (1) or its truncated forms is useful will 
increase with increasing 1. 

GRAPHICAL RESULTS 

Bruin and Beverloo selected the dimensionless variables 
most convenient for analyzing the problem These variables 
also were appropriate for obtaining the solution for small 
values of Fo; however they are not suitable for the graphical 
results. The following “primed” dimensionless variables 
am used to presettethe graphical results. 

l’sLR, 
internal radius 1 

R. - Ri shell thickness = - 1-l 

~ ~ 2nW - T,)Rt 
Q(Ro - RJ = 8x 

at 
Fo’ = (Ro _ RJ2 = FOG’)’ 

R’ E 2 = (R - l)n:, 
0 I 

A' = co represents the plane slab subjected‘to a step in flux. 
Following the form of Carslaw and Jaeger ([6] p 113, 

p. 203, p. 2423 the temperature is transformed further by 
subtracting the. linear increase with time; this transforma- 
tion permits the presentation of results for all values of Fo’ 
rather than for a limited range. The graphical .results are 
presented for four values of X (4, 3/2, 2/3, l/3) in Figs 2-5. 
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FIG. 2 Transient temperature distribution in a shell with 
internal radius of 4 x the thickness. 
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FIG. 3. Transient temperature distribution in a shell with 
internal radius of 3/2 x the thickness. 

, / 
0 0.2 O-4 0.6 0.8 ,.p 

R' 

]FIG. 4. Transient temperature distribution in a shell with 
internal radius of 2/3 x the thickness. 

FIG. 5. Transient temperature distribution in a shell with 
internal radius of l/3 x the thickness. 

The solution for 1’ = co is given in Carslaw and Jaeger 
([6] p. 113) and differs only slightly from Fig 2 To obtain 
solutions for other values of I’, one may interpolate between 
the figures for l/3 < i’ < cc. 
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